Fluorescent Proteins – From the Beginnings to the Nobel Prize

All the effort researches put into the discovery, understanding and enhancement of fluorescing proteins lead to a huge range of applications in life sciences. GFP and its variants opened the door for scientists to watch f.e. metastasis or angiogenesis in living organisms. Moreover the use of fluorescent multicolored neurons (Brainbow) will help to understand complex neuronal networks in the brain. With the possibility to decorate parasites like the Malaria pathogen Plasmodium falciparum with fluorescent proteins it is realizable to watch their fate in host cells. The list of opportunities could be continued almost endless and does not only include clinical relevant projects but also other basic science ventures.

All together the use of GFP and its mutants changed our view on life and its pathological modifications in a dramatic way, that three people who were involved in the discovery and development of GFP were rewarded by giving the Nobel Prize in Chemistry 2008 to them. Osamu Shimomura, Martin Chalfie and Roger Y. Tsien were decorated with the highest honors in science for their work on “the discovery and development of the green fluorescent protein, GFP“.


In the eyes of the Nobel Committee for Chemistry (2008), represented by Professor Måns Ehrenberg “… The discovery and development of the green fluorescent protein (GFP) have radically changed the scientific agenda. Improved variants of GFP and GFP-like proteins in synergy with high-resolution microscopes, computational techniques and powerful theoretical approaches are currently fuelling a scientific revolution focused on quantitative analyses of complex biological systems. The gradual appearance of a world of hitherto unseen structures and dynamic principles is now impacting virtually all aspects of biological, medical and pharmaceutical research …

This quotation of the Presentation Speech for the 2008 Nobel Prize in Chemistry represents once more the high impact of fluorescent proteins on current life sciences and also arouses our curiosity on upcoming utilizations in the future. Recent developments, like highlighter proteins (photoactivateable, photoswitchable or photoconvertable FPs) and the establishment of new optical facilities like super-resolution microscopy make clear, that evolution of fluorescence is still in progress and far away from the end. 

Source link

Leave a Comment

Your email address will not be published. Required fields are marked *

%d bloggers like this: