Month: November 2010

Deep Tissue Imaging

Developmental biology using Multiphoton microscopy with OPO. To gain new insight into the fundamental control of cell response to physical changes and to study the dynamics and roles of biological flow during the development of the zebrafish, Dr. Julien Vermot established his lab last year at the Institute of Genetics and Molecular and Cellular Biology …

Deep Tissue Imaging Read More »

CARS and Confocal

A resonant scanner provides the benefits of compact design and fast frame recording. When based on a true confocal concept of point-illumination and point-observation, the resonant scanner allows a speed of 16,000 Hz frequency in bidirectional mode. At a frame size of 512 × 512 pixels, the system acquires 29 images per second. With lower …

CARS and Confocal Read More »

The Missing Link to the Nanocosm of Life

Conventional fluorescent microscopy is perfectly suited for analysis of a biological specimen, since the localization of fluorescent dyes is easily assessed in both fixed and living specimens. STED goes one step further by enabling the detailed discrimination of even smaller cellular organelles and sub-compartments. In neurobiology many considerable achievements have been made, as described in …

The Missing Link to the Nanocosm of Life Read More »

Restless Receptors

“The understanding of the role of postsynaptic receptors has changed significantly in recent years”, says Choquet. “When I started working in Bordeaux Neuroscience Institute (INB) in 1997, receptors for neurotransmitters were believed to be stable and rather immobile molecules whose activity and regulation were purely based on phosphorylation and structural modification. However, my earlier experience …

Restless Receptors Read More »

What is an OPO?

Multiphoton microscopy with OPO: imaging with excitation wavelengths up to 1.300 nm. Because light scattering is dependent on the wavelength, better tissue penetration can be achieved by using longer excitation wavelengths. This is where excitation with infrared light, two-photon processes, and the OPO (optical parameter oscillator) can dramatically improve image quality. Source link